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Heat intercept insulation system

T n+1 = TH

T 0 = TC
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min power(n, I, x, T )
subject to n ∈ {1, 2, . . . , nmax}, I ∈ In+1

T i−1 ≤ T i ≤ T i+1, i = 1, 2, . . . , n
n+1
∑

i=1

xi = L, xi ≥ 0, i = 1, 2, . . . , n + 1
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The general MVP problem

min
x∈X

f(x)

subject to C(x) ≤ 0,

where
x = (xc, xd) ∈ <nc

×Znd

X = Xc × Xd, where
Xc(xd) = {xc ∈ <nc

: `(xd) ≤ A(xd)xc ≤ u(xd)}

f and C = (c1, c2, . . . , cp) may be discontinuous,
extended valued, costly
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Choices other than pattern search

Some methods that come to mind are:

MINLP methods: cannot handle categorical
variables

Search heuristics: huge numbers of evaluations and
very limited convergence theory

Simulated annealing
Tabu search
Evolutionary algorithms

Other methods: SQP/direct search with 1
categorical variable
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Generalized pattern searches

INITIALIZATION of directions and step size

For k = 1, 2, . . .

SEARCH a finite set of mesh points

POLL neighboring mesh points
UPDATE parameters:

Success: Accept new iterate
Failure: Refine mesh

End
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Details of kth POLL step

Mesh: Mk = {pk + ∆kDz : z ∈ Z
|D|
+ },

Poll set: Pk = {pk + ∆kd : d ∈ Dk ⊆ D},

where
pk is the current poll center
∆k > 0 is the mesh size parameter
Dk, D are positive spanning sets

Examples: D = [I,−I] D = [I, − e]

One of these directions
should be a descent direction.

Derivative information can
reduce poll set to a singleton s s s s ss s s s ss s s s ss s s s ss s s s ss s s s s

pk�
�
�

A
A

���

⊗

⊗
⊗
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Definition of local optimality

x = (xc, xd) ∈ X is a local minimizer of f with respect to
neighbors N (x) ⊂ X if ∃ε > 0 such that f(x) ≤ f(v)

∀v ∈ X ∩
⋃

y∈N (x)

(

B(yc, ε) × yd
)

.

•x��
��

Xc × xd

•y��
��

Xc × yd
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Heatshield discrete neighbors

Replace any single insulator with a different type

Remove any intercept with its left insulator, and
increase the thickness of its right insulator to absorb
the deficit
Add an intercept at any position:

The existing insulator is divided (rounded to the
mesh)
The cooling temperature is set to the average of the
two intercepts adjacent to it (rounded to the mesh)
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Construction of the poll set

>

-

6

xc
1

xc
2

xd

xd
k

•
xk

u
v

w

Pk = {u, v, w}
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Construction of the poll set
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xc
1

xc
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xd

xd
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•

•

•
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1

xk

y0
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v

w

Pk = {u, v, w}
N (xk) = {xk, y

0
1, y

0
2}

y0
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f(xk) < f(y0
1) < f(xk) + ξ
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Construction of the poll set
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xc
1

xc
2

xd

xd
k

•
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•

y0
1

xk

y0
2

y1
1a

b

c

u
v

w

Pk = {u, v, w}
N (xk) = {xk, y

0
1, y

0
2}

Xk = {y1
1} ∪ {a, b, c}

y0
1 ∈ N (xk) satisfies

f(xk) < f(y0
1) < f(xk) + ξ

Poll Set: Pk ∪N (xk) ∪ Xk
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Filter GPS for nonlinear constraints

6
f

-
h

h(x) = ‖C(x)+‖
2

fF
k

(hI
k,f I

k )

hmax

Fk

r r

Poll center is either best
feasible point or least
infeasible point.

For each trial point x,
h(x) and f(x) are plot-
ted on the bi-loss map.

If x is unfiltered, it is
added to the filter; oth-
erwise, the mesh is re-
fined.
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Construction of the poll set

>

-

6

xc
1

xc
2

xd
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k
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•

y0
1

pk

y0
2

y1
1a

b

c

u
v

w

Pk = {u, v, w}
N (pk) = {pk, y

0
1, y

0
2}

Xk = {y1
1} ∪ {a, b, c}

y0
1 ∈ N (pk) satisfies

the extended poll criteria

Poll Set: Pk ∪N (pk) ∪ Xk

Pattern Search for Mixed Variable Optimization Problems – p.14/35



Local filter for extended polling
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Main Filter

Pattern Search for Mixed Variable Optimization Problems – p.15/35



Local filter for extended polling

6
f

-
h

fF
k

(hI
k,f I

k )

hmax

Fk

r r

hI
k+ξh

k

fF
k +ξ

f
k

*

Main Filter

6
f

-
h

∗

hI
k+ξh

k

F
L

k

Local Filter

Pattern Search for Mixed Variable Optimization Problems – p.16/35



Filter GPS algorithm for MVP

INITIALIZATION: Set ∆0, ξ > 0, and populate filter
For k = 1, 2, . . . , do

Update poll center pk and extended poll triggers ξ
f
k , ξh

k

Compute incumbent values fF
k , f I

k , hI
k

While trial points are filtered do:
SEARCH: Any finite strategy on the mesh

POLL: Evaluate points in Pk ∪N (pk)

EXTENDED POLL: Evaluate points in Xk(ξ
f
k , ξh

k )

Update:
If (found), set ∆k+1 ≥ ∆k and update filter

If (not found), set ∆k+1 < ∆k
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Convergence theory assumptions

All iterates lie in a compact set

The linear constraint matrix A is rational
The mesh directions conform to the geometry of X c

All discrete neighbors lie on the current mesh

The set-valued neighborhood function N : X → 2X

satisfies a notion of continuity.
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Limit points of the algorithm

∃ subsequence K such that lim
k∈K

∆k = 0, with limit points:

1. p̂ = lim
k∈K

pk, where pk ∈ {pF
k , pI

k}

2. ŷ = lim
k∈K

yk, where yk ∈ N (pk) and ŷ ∈ N (p̂).

3. ẑ = lim
k∈K

zk, where zk are extended poll endpoints.

•
pk

•yk
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Filter convergence results

Let D(p̂) be the set of polling directions used i.o.

h continuous∗ at p̂ and ŷ ⇒ h(p̂) ≤ h(ŷ)

f continuous∗ at p̂ and ŷ and pk = pF
k i. o.

⇒ f(p̂) ≤ f(ŷ)

h Lipschitz∗ near p̂ ⇒ h◦(p̂; (d, 0)) ≥ 0 ∀d ∈ D(p̂)

f Lipschitz∗ near p̂ and pk = pF
k i. o.

⇒ f ◦(p̂; (d, 0)) ≥ 0 ∀d ∈ D(p̂)

h strictly differentiable∗ at p̂ and ⇒ ∇h(p̂) = 0

Similar results hold for certain ẑ
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Filter convergence results

f strictly differentiable∗ at p̂ and pk = pF
k i. o.

⇒ −∇cf(p̂) ∈ C◦
d . Similar results hold for certain ẑ

�
�
�
�

Cd

XXXX

C◦

d

�����1−∇f

∗ with respect to the continuous variables
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Heat intercept insulation system

T n+1 = TH

T 0 = TC

� T i+1� T i� T i−1
?

6

L ?6xi+1

?6xi

����������������������������������������������������������������������������

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

min power(n, I, x, T )
subject to n ∈ {1, 2, . . . , nmax}, I ∈ In+1

T i−1 ≤ T i ≤ T i+1, i = 1, 2, . . . , n
n+1
∑

i=1

xi = L, xi ≥ 0, i = 1, 2, . . . , n + 1
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Previous heat shield studies
Hilal & Boom: 1-3 intercepts, single insulator type,
constant cross-sectional areas

Hilal & Eyssa: 1-3 intercepts, single insulator type,
variable cross-sectional areas
Kokkolaras, Audet & Dennis: Variable number of
intercepts, multiple insulator types, constant
cross-sectional areas
Current work: Variable number of intercepts,
multiple insulator types, variable cross-sectional areas,
load-bearing nonlinear constraints

Pattern Search for Mixed Variable Optimization Problems – p.28/35



Previous heat shield studies
Hilal & Boom: 1-3 intercepts, single insulator type,
constant cross-sectional areas
Hilal & Eyssa: 1-3 intercepts, single insulator type,
variable cross-sectional areas

Kokkolaras, Audet & Dennis: Variable number of
intercepts, multiple insulator types, constant
cross-sectional areas
Current work: Variable number of intercepts,
multiple insulator types, variable cross-sectional areas,
load-bearing nonlinear constraints

Pattern Search for Mixed Variable Optimization Problems – p.28/35



Previous heat shield studies
Hilal & Boom: 1-3 intercepts, single insulator type,
constant cross-sectional areas
Hilal & Eyssa: 1-3 intercepts, single insulator type,
variable cross-sectional areas
Kokkolaras, Audet & Dennis: Variable number of
intercepts, multiple insulator types, constant
cross-sectional areas

Current work: Variable number of intercepts,
multiple insulator types, variable cross-sectional areas,
load-bearing nonlinear constraints

Pattern Search for Mixed Variable Optimization Problems – p.28/35



Previous heat shield studies
Hilal & Boom: 1-3 intercepts, single insulator type,
constant cross-sectional areas
Hilal & Eyssa: 1-3 intercepts, single insulator type,
variable cross-sectional areas
Kokkolaras, Audet & Dennis: Variable number of
intercepts, multiple insulator types, constant
cross-sectional areas
Current work: Variable number of intercepts,
multiple insulator types, variable cross-sectional areas,
load-bearing nonlinear constraints

Pattern Search for Mixed Variable Optimization Problems – p.28/35



Nomenclature

k(T ; Ii) = Thermal conductivity function for insulator i
Pi = Power applied to intercept i
Ci = Thermodynamic cycle coefficient at intercept i
qi = Heat flow from intercept i to i − 1
Ai = Cross-sectional area of insulator i
σ(T ; Ii) = maximum allowable stress function
e(T ; Ii) = unit thermal expansion function
ρ(Ii) = density of the insulator i material
F = load (force) to be placed on the system
mmax = maximum allowable mass of the insulators
δ = maximum allowable % thermal contraction
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Heat shield objective and nonlinear
constraints

Minimize power:
n

∑

i=1

Pi =
n

∑

i=1

Ci

(

TH

T i

− 1

)

(qi − qi−1)

By Fourier’s law: qi =
Ai

xi

∫ T i

T i−1

k(T ; Ii)dT, i = 1, 2, . . . , n + 1

Stress:
F

Ai

≤ min{σ(T ; Ii) : T i−1 ≤ T ≤ T i} (binding)

Mass:
n+1
∑

i=1

ρ(Ii)Aixi ≤ mmax

Contraction:
n+1
∑

i=1





∫ T i

T i−1

e(T ; Ii)k(T ; Ii)dT
∫ T i

T i−1

k(T ; Ii)dT





(xi

L

)

≤
δ

100
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Heat shield implementation

Materials:
Nylon 6063-T5 Aluminum
Teflon Fiberglass Epoxy (normal cloth)

304 Stainless Steel Fiberglass Epoxy (plane cloth)

1020 Low Carbon Steel

Material Data from Lookup Tables or Graphs:
Thermal Conductivity Unit Thermal Contraction
Maximum Allowable Stress (Tensile Yield Strength)

Interpolation/Integration: Cubic splines, Simpson’s rule

Search/Poll: No Search, Poll around pF
k

Matlab Software: NOMADm, available for download
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Heat shield computational results

Source PL
A

[

W
cm

]

Insulators
Hilal & Boom 68.6 EpEpEp

Kokkolaras et al. 25.3 NNNNNNNEEET

Kokkolaras rerun 25.59 NNNNNNTEETT

Hilal & Eyssa 53.2 EpEpEp

with stress constraint 24.55 EEEEEEEEEEE

with all constraints 23.77 EEEEEEEEEEE

Parameters:
TH = 300 K, T C = 4.2 K, L = 100 cm, nmax = 10

F = 250 kN, mmax = 10 kg, δ = 5%

Termination: ∆k ≤ .15625
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Profile of heat shield run
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Heat shield filter progress
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Conclusions
We have found an effective method for mixed variable
problems... BUT...

It requires serious thinking by the user as to what
constitutes an acceptable solution for each problem

It is not easy to incorporate surrogates with
categorical variables
It is unlikely to be effective for many categorical
variables

We have analyzed the method, BUT.., better results
depend on the filter method for continuous variables
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